Serie 03 - Solution

Preamble

Space Charge Region

As discussed during the lecture, in an intrinsic semiconductor, each electron
promoted to the conduction band leaves a hole in the valence band. Both of
these carriers can move more or less freely within the semiconductor. Even
though theoretically, the random motion of free carriers can generate localized
regions containing slightly more holes or electrons, the electric field generated
by this charge difference will immediately attract the needed charge and neu-
tralize these regions. Therefore, such phenomena are never observed in practice.

In the case of a uniformly doped semiconductor, the concept remains sim-
ilar. For example, when a donor dopant is ionized, the atoms donate one of
their electrons to the conduction band, generating a free electron and becoming
slightly positive themselves. Unlike the electrons or holes generated by dopant
ionization, the dopants themselves, being part of the crystal structure, cannot
move easily. Nevertheless, the principle remains the same as for intrinsic semi-
conductors: if theoretically, the random motion of free carriers can generate
localized regions with a slight charge, these regions will be immediately neutral-
ized by the electric field generated.

In the case of an n-type non-uniformly doped semiconductor, the electron
density depends on the donor concentration, but not only. Similar to many
other phenomena, free carriers tend to flow towards regions where the carrier
density is lower. The formulas that describe this flow (F,, and F},) are as follows:

dn d

F==Da F,= —Dpﬁ (1)
This flux of carrier diffusion will create what is known as the diffusion current.
In our case, electrons flow towards regions with lower electron density, while
the donors, being part of the crystal structure, remain immobile. Consequently,
the region from which the electrons flow has a higher concentration of ionized
donors (positive) compared to electrons (negative), resulting in a positive charge
in that region. Conversely, the region into which the electrons flow has a higher
electron (negative) concentration than the ionized donor (positive) concentra-
tion, creating a negatively charged region. These charged regions generate an
electric field that counteracts the diffusion current, leading to a drift current. A
similar reasoning can be applied to p-type semiconductors.



The best example of such a phenomenon is, of course, the p-n junction. In
all cases, the overall structure must remain neutral at thermal equilibrium. This
is evident from the preceding paragraph, but it is also essential to prevent the
generation of an electric field within the structure.
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Figure 1: a) Intrinsic semiconductor. b) Uniformly doped n-type semiconductor.
¢) Non-uniformly doped n-type semiconductor.

Overall charge neutrality

During the formation of the space charge region, charges are moved around, but
none appear or disappear. This leads to an overall neutrality of the PN-junction.
In other words, even if space charge regions are created, the total amount of
positive and negative charge will be zero. By applying Maxwell’s equations
(Gauss’s law), we can therefore say that outside of the space charge region, no
electric field will exist. Another way to see this is that if the overall structure of
the PN-junction is not neutral, an electric field will be created, attracting any
possible charge in the outside world to cancel out these non-balanced charges.

Given constants

ni(Si) = 1.5-100 [em™3] @ T = 300[K]
k= 8.62-107° [eV/K]

q=1.60-10"12[C]

€o = 8.85- 1071 [F/cm]

€5, — 11.7 - €0



Exercise 01

A silicon bar is doped with acceptor dopants following a profile shown in Fig.
2. The dopant density, N,, increases quasi-monotonically from Ngpn < n; at
x = 0 t0 Ngmaz = cst at & = L. Tt is considered that N, = n; at x = L/2,
the dopant concentration saturates to a constant value near x = L, the donor
concentration is Ny = 0 throughout the bar, and finally, thermal equilibrium is
assumed.
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Figure 2: Non-uniform doping profile.
Solution

The first thing to do here is to roughly draw the electron ny and hole concentra-
tion po.This drawing is relatively easy to perform, firstly we will not take into
account the diffusion and drift current and, as this dopant is a donor we will
focus our self on an approximative hole concentration p,. In this condition, we
cans use the approximations developed in the To Go Further subsection of
Exercise 02 in the correction of Series 01:

pa~ Ny — NS if (Nf—-N;)>n; (2)
and:
Pa &Ny Af [Ny = NF| < n (3)

This two approximations lead to the following result, when N, < n; the hole
concentration p, follow n; and when N, > n;, p, follow N,.

Now we will consider the contribution of both diffusion and drift currents.
In this case, it is easier to think about the flow of carriers. In other words, some
of the holes from the higher concentration will be added to the lower concen-
tration. Based on the equations that govern diffusion and drift currents, we can



also conclude that the electron and hole concentrations must be continuous.

Now that we have the hole concentration, the electron concentration is easy
to deduce: ng = n?/pg. And since we are in logarithmic representation, we can
simply mirror the hole concentration with the n; line.
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Figure 3: Electron and hole concentration.
Questions

Choose the correct answer to the following questions:

Q1. Where is the maximum hole concentration reached in this structure?

a) x=0 d) L/2<z<L
b) 0<x < L/2
c) x=1L/2 e)z=1L

Sol: e) © = L can be deduced directly from Fig. 3. The further you are
from the non-uniform doping region, the closer you are to the target
value of p(x) = N, if N, > n;.



Q2. Where is the maximum electron concentration reached in this structure?

a) x=0 d) L)2<z<L
b) 0<z<L/2
c) z=1L/2 e) z=1L

Sol: a) =0, can be deduced directly from Fig. 3:

e The further you are from the non-uniform doping region, the closer
you are to the target value of p(x) = n; if N, < n;.

e Even though the acceptors in such concentration have a negligible
effect, they do not have no impact.

Q3. In which direction is the diffusion current of holes oriented?

a) -7 c) There is no diffusion current of
b) ¥ hole.
Sol: a) —%
e You can use the diffusion current discussed during the course: Jgif fx
—dp/dx

e The holes diffuse from the higher concentration to the lower one (in
the direction of —&). Since the charge of the holes is positive, the
current is oriented in the direction of the diffusion (in the direction
of —7).

Q4. In which direction is the drift current of holes oriented?

a) -7 c) There is no drift current of
b) & hole.
Sol: b) ¥

e As explained in the preamble of this series, at thermal equilibrium,
the drift current is opposite in direction to the diffusion current.

e The diffusion flow generates a positive region on the left side and a
negative region on the right side. The electric field is oriented in the
direction of #, and as a result, the drift current follows the direction
of the electric field.



Q5. In which direction is the diffusion current of electron oriented?

a) -7 c) There is no diffusion current of
b) & electron.
Sol: a) —%
e You can use the diffusion current discussed during the course: J4//
dn/dx

e The electrons diffuse from the higher concentration to the lower one
(in the direction of Z). Since the charge of the electrons is negative,
the current is oriented in the reverse direction of the diffusion (in the
direction of —Z).

Q6. In which direction is the drift current of electron oriented?

a) -7 c) There is no drift current of
b) # electron.
Sol: b) ¥

e As explained in the preamble of this series, at thermal equilibrium,
the drift current is opposite in direction to the diffusion current.

e The diffusion flow generates a positive region on the left side and a
negative region on the right side. The electric field is oriented in the
direction of 7, and as a result, the drift current follows the direction
of the electric field.

Q7. In which direction is the electric field oriented?

a) -7 c) There is no electric field.
b)

8

Sol: b) ¥
e The electric field always follows the direction of the drift current.

e The diffusion flow generates a positive region on the left side and a
negative region on the right side. The electric field is oriented in the
direction of Z.



Q8. At which point in the structure is the internal electric potential maximum
in absolute value? Considering that ¢(z = 0) = 0.

a)
b)

<)

Sol:

z=0 d) L/2<z<L
0<z<L/2

x=1L/2 e) z=1L

e) x = L. The definition of electric potential is as follows:

¢:7/E~dl (4)

In our case, the electric field does not change direction, and if ¢(z =
0) = 0, the electric potential monotonically decreases until z = L.
Therefore, the maximum absolute value of the electric field is at
x = L.

Q9. At which point in the structure is the internal electric field maximum in
absolute value?

a)
b)

c)
Sol:

z=0 d) L/2<z<L

O<z<L/2

x=1L/2 e) z=1L

c) x = L/2. The drift current is linearly dependent on the electric

field. The maximum electric field coincides with the maximum drift
current. The drift current is opposite in direction but equal in mag-
nitude to the diffusion current. The maximum electric field coincides
with the maximum diffusion current. The diffusion current is linearly
dependent on the derivative of the carrier concentration. The maxi-
mum electric field coincides with the maximum derivative of carrier
concentration.

Q10. If the doping level N, increases according to a new profile shown in Fig.
4, what happens to the absolute maximum internal electric potential?

a)
b)

Sol:

It increase. c) It doesn’t change.
It decrease.

a) It increase.

In this case, the concentration gradient increases, resulting in a higher
number of charges flowing and consequently a higher electric field.

In this case, as the concentration gradient increases, the diffusion
current also increases. As a result, the drift current needs to increase
to compensate for it, which in turn requires a higher electric field.



Q11. If the doping level N, increases according to a new profile shown in Fig.
4, what happens to the absolute maximum internal electric field?

a) It increase. c) It doesn’t change.
b) It decrease.

Sol: a) It increase. The electric field increases and remains oriented in
only one direction, therefore the electric potential also increases.
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Figure 4: New non-uniform doping profile.



Exercise 02

We have a p-n junction at room temperature and thermal equilibrium. The p-
type region of the junction is doped with N, = 10'® [em ™3] and Nq = 0 [em™3].
The n-type region of the junction is doped with N, = 0[cm™] and Ng =
107 [em™3]. Use the depletion approximation for this exercice.

a) Calculate ¢, ¢p, and ¢; the built-in potential.

b) Using the depletion approximation, draw and calculate the charge distri-
bution in the p-n junction p(z). Let z,0 and z,0 represent the unknown
depletion widths on each side of the p-n junction.

c) Based on the calculated charge distribution, draw and calculate the electric
field F (x).

d) Based on the calculated electric field, draw and calculate the electric po-
tential.

e) Use the built-in potential calculated at point a) and the potential calcu-
lated at point d) to determine the depletion widths on each side of the
p-n junction, x,g and pp.
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Figure 5: Exercise 02 p-n junction draw.



Solution A
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Figure 6: Illustration of ¢, and ¢, in a uniformly doped n and p-Type semi-
conductor.

As explained in the course and displayed in Fig. 6, ¢, and ¢, represent
the voltage differences between the intrinsic Fermi level and the real Fermi
level for the P-Type and N-Type regions of the PN-junction, respectively. To
determine them, we simply applied the Boltzmann relation, which establishes
a relationship between the electron and hole concentrations ng(x) or po(z) and

o) KT ( Ny
On="ln ( o ) = 406 [mV] ()
by = _%T In (f") = =347 [mV] (6)

Due to the diffusion mechanism, the real Fermi level cannot exhibit discon-
tinuities along a semiconductor structure. When two structural pieces with
different Fermi levels are joined together, a space charge region appears, gen-
erating a potential difference and bending the energy levels to achieve Fermi
level continuity. Consequently, the built-in potential for an PN-junction can be
viewed as a simple summation of ¢, and ¢,,.This is illustrated in Fig. 7.

0y = b= 6y = =t (R ) 753 ) @
K3

What is most important from a physical standpoint is the energy difference
between levels. In semiconductor physics, for representing band diagrams, a
convention often used is to, at thermal equilibrium, keep the Fermi level constant
throughout the entire structure and to bend the other energy levels around it
to ensure the correct energy differences. Example of such a representation is
provided in Fig. 7.
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Figure 7: Band diagram of a standard PN-junction.

Note: Be very careful about the unit of the Boltzmann constant; the most
common unit is [J/K]. Standard equations seen during the course use the
Boltzmann constant with this unit. However, in some cases, including some
series like this one, the Boltzmann constant provided may be in [eV/K]. In
such cases, you have to convert the constant before use or adjust the formula
accordingly. To convert from [eV] to [J], you multiply the value in [eV] by the
elementary charge ¢. In the case of the [eV/K] unit, Eq. 5 becomes:

én = kT1n <Nd) (8)

%

Solution B

The charge density distribution is shown in Fig. 8. Using the depletion approx-
imation, we can infer that all the holes from —X,y to 0 and all the electrons
from X,o to 0 have diffused toward each other and subsequently recombined,
leaving behind the dopants in this region, which remain immobilized by the
crystal. Consequently, in the P-Type regions, the ionized donors have captured
an electron, resulting in a slightly negative charge. Thus, from —X,y to 0, we
have a charge concentration of —¢ multiplied by the dopant concentration N,.
A similar reasoning can be applied for the N-type region. This gives us:

0 ) ]<_ XPO]
o —qNg s ] pOa ]
plx) = qNd ) € ]-0; Xno] )
0 ) ] n0; ]
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Solution C

The electric field is shown in Fig. 8. By applying Maxwell’s equations (Gauss’s
law) in a one-dimensional case, we know that the electric field is simply the inte-
gration of the charge density along the x-axis divided by the dielectric constant

of the current medium. N
E(z) = / (), (10)

oo €

In the case of charge density find before:

0 s T € ](—, _XpO]
Er — oy , x €]—=Xp0;0]
B ={% ~ & % (11)
Ey + e , x €]-0; Xy
0 , T € ]XnO;_>]

In accordance with the overall charge neutrality explained in the preamble
of this series, we understand that the electric field outside the space charge
region is zero. Due to the nature of electric field integration and the uniform
medium (having the same relative dielectric constant), we can establish that the
electric field along the PN junction should be continuous. Therefore, we can
utilize this knowledge to determine the integration constants E; and Ej :

. — qN,
1 E(x)=0 = E, =-— X 12
B () 0 o X (12)
and: N
lim E(x)=0 =— By =-x, (13)
z—Xn0— €si
Still because of electric field continuity we can write:
lim E(z) = lim E(x) = FE; =E}=E, (14)
z—0— z—0t
And Therefore: N N
Bo=-Lox = -Lx (15)
€54 €54

Eq. 15 also directly relates the dimensions of the space charge region on the left
and right sides.
NaXno = NoXpo (16)

Note: Egs. 15 and Eq. 16 are the direct consequence of the zero electric
field outside the space charge region, and therefore of the overall charge neu-
trality of the PN junction. Therefore, Eq. 16 can be rewritten more quickly by
directly applying the charge neutrality principle. In this case, the total amount
of charge in the P-Type part is:

Qp = —qN,Xpo (17)
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And the total amount of charge in the N-Type part is:
Qn = quXnO (18)

Now, the charge neutrality condition is:

Qn+Qp=0 (19)

and finally:
Nan() = NaXpO (20)

Note: By construction in Eq. 11, the integration constant Fj represents the
electric field value at x = 0, which also corresponds to the maximum value of
the electric field throughout the PN junction.

Solution D

The electrical potential across the structure is depicted in Fig. 8. This potential
can be easily calculated using the formula:

—/_;E(ac) dz (21)

To simplify the integration, we will quickly rewrite the electric field in Eq. 11
using the definition of Ey given in Eq. 15:

0 L @€ )Xl
e m+ X)), w€]-Xp0i0]
E@ =Vl x,0) . rel-0%) 22
0 5 ]Xn07 ]

We can utilize Eq. 21 to determine the electrical potential across the structure.
Currently, we cannot assume anything about the electrical potential of the P-
Type and N-Type regions; therefore, we will use ¢; and ¢ respectively.

(bl ’ ]H XPO}
¢1 + & (fE + Xp0)2 ) ] va ]
€s; 23
o) o — L (2 — Xn0)® @ €]=0; X @)
¢2 3 ] n03 ]

Due to the integration of the electric field, we can guarantee that the electric
potential is continuous. Therefore:

lim ¢ (z) = lim ¢ (x) (24)

z—0t1 z—0—
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qN,

o+ g = g0 - X2 (25)
That we can rewrite:
q
— (NaX2o + NaX2y) = b2 — 61 = ¢ (26)

€Si

Solution E

To guaranty potential continuity, Eq. 26 provides us with the potential differ-
ence between the two parts of the structure. As we have already calculated
in Eq. 7, this corresponds to the built-in potential ¢,. In Eq. 16, we have
established a relationship between X0 and X,g. In this example, we decide to
express X, as a function of X,o:

q Na+Nd

Ng
2¢€g; Ny

X7 = o (27)

We can now extract X:

| 2esiNapp
Xpo = N Vot ND) 298 [nm)] (28)

Still, by utilizing the relationship between X, and X0, we can write:

2€SiNa¢b
Xno =y "~ =29.8 29
0 qu (Na ¥+ Nd) [nm} ( )

Note: We can observe from Eq. 16 that, due to overall charge neutrality,
the p-type and n-type depletion lengths are linked. Here, it is evident that the
n-type depletion length is 10 times smaller than the p-type depletion length,
indicating that the acceptor concentration is 10 times greater than the donor
concentration.

Note: Be very careful with the units. In semiconductor physics, we prefer
to work in centimeters [cm] rather than meters [m]. Therefore, you must ensure
that everything is expressed in [m]. For example, in this series, we provide the
vacuum and silicon dielectric constants expressed in [F/em], but often, such
constants are given in [F/m] on calculators or the internet. This also implies
that distance results, such as depletion length, will be given in [mm], and you
will need to convert them back to [m].

14



To Go Further

To properly complete the PN-junction calculation, we will determine the maxi-
mum electric field Ey. To do this, we will simply substitute the formula for X,
found in Eq. 28 into the equation for Ej given in Eq. 15. This gives us the

following equation:
[2q Ny Ny MV
Ey=\————¢p =46 |— 30
0 €Sz’Na+Nd¢b { m } (30

Note: Again be very careful with the units.

Exercise 03

Considering the junction calculated in the preceding exercise with depletion
approximation, if @) is the charge in the n-Type part of the space charge region,

and —@ is the charge in the p-Type part of the space charge region, calculate
0Q(ov)
¢y -

Solution
With the depletion approximation we have:

And as calculated in the preceding exercise:
2€5; N,
X0 = _ 2esilNady (32)
qNa (No + Na)

NaNd
Q =1/ 2qesi NN,V ®b (33)

This give us:

And therefore, the derivative is:

0Qb) [ NNg 1
oy 2qESZNa-&-Nal2\/(15717 (34)
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Figure 8: Illustration of different physical values through the PN-junction: A)
Charge density distribution in the PN-junction. B) Electric field distribution in
the PN-junction. C) Potential distribution in the PN-junction.
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